Disclaimer: ONLINE HW is easier than the notes BUT QUIZ & TEST covers NOTES, CLASSWORK AND HW. REVIEW ALL

Without a calculator, approximate the solution of the following equations

a)
$$2^x = 10$$
 b) $3^x = 10$

For $x > 0, a > o, a \neq 1$,

 $y = \log_{a} x$ if and only if $x = a^{y}$

The function $f(x) = \log_{a} x$ is called a **logarithmic function with base** *a*.

1) Rewrite each of the following equations in logarithmic form (if possible). If not possible, say why.

a.
$$4^x = 64$$
 b. $5^x = \frac{1}{125}$ c. $2^x = -32$

 Use the definition of a logarithmic function to evaluate each logarithm at the indicated value of x. <u>No calculator</u>

a.
$$f(x) = \log_4 x, x = 16$$

b. $f(x) = \log_2 x, x = 64$

c.
$$f(x) = \log_3 x, x = \frac{1}{81}$$

d. $f(x) = \log_5 x, x = 1$

3) Use a calculator to evaluate the function given by $f(x) = \log x$

a. x=100 b.
$$x = \frac{1}{5}$$
 c. x=3.25 d. x=-4

4) Simplify <u>No calculator</u>

a.
$$\log_5 1$$
 b. $\log_{\sqrt{11}} \sqrt{11}$ c. $8^{\log_8 30}$

d. log ⁵√10

e. $\log_5 \sqrt[3]{5^7}$

f. log₈₁9

g. $\log \frac{1}{1000}$

5) Solve <u>No calculator</u>

a. $\log_5 y = \log_5 16$ b. $\log(4-3x) = \log(x+2)$ c. $\log_3(x^2+4) = \log_3 24$	a. $\log_5 y = \log_5 16$ b. $\log(4-3x) = \log(x+2)$	c. $\log_3(x^2+4) = \log_3 2$
--	---	-------------------------------

To sketch the graph of $y = \log_a x$, use the fact that the graphs of inverse functions are reflections of each other in the line y=x (the x and y variables are interchanged). $y = \log_a x$ and $y = a^x$ are inverses of each other.

6) On the same coordinate plane, sketch the graph of each function

a) $f(x) = 4^x$

b) $g(x) = \log_4 x$

• Construct a table of values for f(x) <u>No calculator</u>

Х	-3	-2	-1	0	1	2
f(x)						

• Since $g(x) = \log_4 x$ is the inverse of $f(x) = 4^x$ the graph of $g(x) = \log_4 x$ is obtained by interchanging the x and y variables of $f(x) = 4^x$. In other words, plot the points (f(x), x)

7) Sketch the graph of $f(x) = \log\left(\frac{x}{4}\right)$. Identify the domain, x-intercept, and vertical asymptote.

Х	0	1	3	4	5	7
f(x)						

- 8) Describe the graph as a transformation of the graph of $f(x) = \log_3 x$ State the domain and vertical asymptote.
- a) $g(x) = \log_3 x 3$

b) $h(x) = \log_3(x+2)$

Section 3.3 Logarithmic Functions and their Graphs

The Natural Logarithmic Function

The function defined by $f(x) = \log_e x = \ln x, x > 0$ is called the natural logarithmic function. Inverses: $f(x) = e^x$ and $g(x) = \ln x$

Use a calculator to evaluate the function given by $f(x) = \ln x + 1$ for each value of x to four decimal places.

a) x=73.25 b) x=0.4 c) x=-2 d) x= $2 + \sqrt{3}$

Properties of Natural Logarithms

- 1. $\ln 1 = 0$ because $e^0 = 1$
- 2. $\ln e = 1$ because $e^1 = e$
- 3. $\ln e^x = x$ and $e^{\ln x} = x$ (inverse property)
- 4. If $\ln x = \ln y$ then x=y (one to one property)
- 9) Use the properties of natural logarithms to simplify each expression.
- a) $\ln e^{1/2}$ b) $e^{\ln 8}$ c) $15 \ln 1$ d) $\frac{\ln e}{6}$ e) $\ln \sqrt[9]{e^5}$

10) Find the domain of each function.

a)
$$f(x) = \ln(x+5)$$

b) $f(x) = \ln(3-x)$
c) $f(x) = \ln x^3$

- 11) Students in a mathematics class were given an exam and then retested monthly with an equivalent exam. The average scores for the class are given by the human memory model $f(t) = 78 17 \log(t+1), 0 \le t \le 12$, where t is time in months.
- a) What was the average score on the original exam (t=0)?
- b) What was the average score after 3 months?
- c) What was the average score after 11 months?